|
In mathematics, van der Corput's method generates estimates for exponential sums. The method applies two processes, the van der Corput processes A and B which relate the sums into simpler sums which are easier to estimate. The processes apply to exponential sums of the form : where ''f'' is a sufficiently smooth function and ''e''(''x'') denotes exp(2πi''x''). ==Process A== To apply process A, write the first difference ''f''''h''(''x'') for ''f''(''x''+''h'')−''f''(''x''). Assume there is ''H'' ≤ ''b''−''a'' such that : Then : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Van der Corput's method」の詳細全文を読む スポンサード リンク
|